

MLA-01122B-H6

1 - 12 GHz Low Noise MMIC Amplifier in Hermetic Package

May, 2011

Features:

Wide Frequency Range: 1.0 to 12 GHz
Excellent NF: 1.6 dB @ 6.0 GHz
High Gain: 17 dB @ 6 GHz

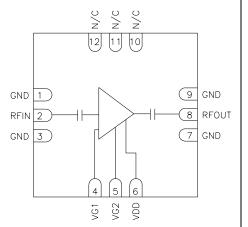
High Gain: 17 dB @ 6 GHz
 P-1dB: 16 dBm @ 6 GHz
 OIP3: 27 dBm @ 6 GHz

Bias Condition: VDD = 5 V and IDD = 55 mA

• 50-Ohm On-chip Matching

Unconditionally Stable: 50 MHz to 20 GHz
 6x6 mm, 12 Lead Hermetic Ceramic SMT Package

Also Available in Low Cost Non-Hermetic SMT Packages


Applications:

- Satellite Communications
- Space and Hi-Rel Applications
- EW Systems
- Telemetry
- Test Instrumentation
- Microwave Point-to-Point Radios
- Wide-band Communication Systems
- Commercial Wireless System

Description:

The MLA-01122B-H6 is a packaged fully-matched broadband Low-Noise MMIC amplifier utilizing high-reliability low-noise GaAsAl/InGaAs PHEMT technology. This MMIC is suited for Satellite Communications, Microwave radios, Instrumentation, Wideband Systems and also many commercial wireless applications where low-noise figure with high-gain is desirable. It has excellent gain (17 dB) and Noise Figure (1.6 dB, mid-band) over a broad frequency range. Typical P-1dB is 16 dBm with OIP3 of +27dBm @ 6 GHz. Its on-chip bias circuit, choke, and DC blocking provide bias stability and ease of use. Available in 6x6mm, 12 Lead Ceramic SMT Hermetic Package, and other low cost non-hermetic SMT packages.

Functional Diagram

MLA-01122B-H6

1 - 12 GHz Low Noise MMIC Amplifier in Hermetic Package

May, 2011

Electrical Specifications: VDD=+5.0V,VG1=+0.14V, VG2=+2V, IDD=55mA, Ta=25 ℃ Z0=50 ohm (1)

Parameter	Units	Typical	Test Conditions
Frequency Range	GHz	1 - 12	
Noise Figure	dB	1.5 1.6 2.0	2 GHz 6 GHz 12 GHz
Gain	dB	17 18	1 – 8 GHz 10 – 12 GHz
Gain Flatness	+/-dB	0.7 1.0	1 – 8 GHz 1 – 12 GHz
Input Return Loss	dB	14 12 12	2 GHz 6 GHz 12 GHz
Output Return Loss	dB	11	
Output P-1dB	dBm	17.5 16.0 15.5 14.0	2 GHz 6 GHz 10 GHz 12 GHz
Output IP3 @ 0 dBm/tone, 1 MHz separation	dBm	31 27 26	2 GHz 6 GHz 12 GHz
Operating Bias Conditions: VDD IDD	V mA	+ 5 55	VG1= +0.14 V typ. VG2= + 2 V, typ. ⁽¹⁾
Stability Factor K		> 1	0.05 to 20 GHz

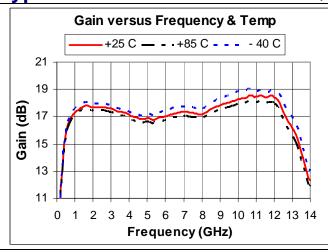
⁽¹⁾ All Data is measured on Evaluation Board, with VG2 bias derived from VDD bias using resistive voltage divider as shown in Evaluation Board Schematic & Layout. VG1 is used to set the desired bias current. Typical VG1 ranges from +0.1 to +0.2 V.

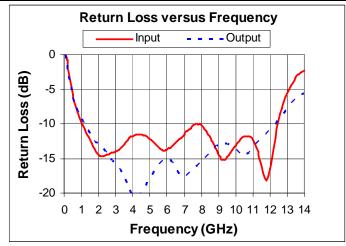
May, 2011

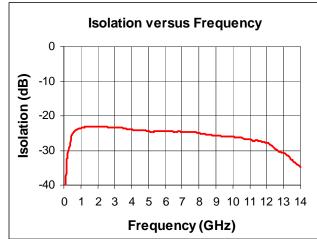
Absolute Maximum Ratings:

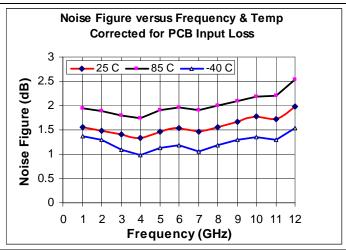
SYMBOL	PARAMETERS	UNITS	ABSOLUTE MAXIMUM
VDD	Drain Voltage	V	7
IDD	Drain Current	mA	75
Pdiss	DC Power Dissipation	W	0.4
Pin max	RF Input Power	dBm	13
Toper	Operating Case/Lead Temperature Range	°C	- 40 to + 85
Tch	Channel Temperature	°C	150
Tstg	Storage Temperature	°C	-60 to +150

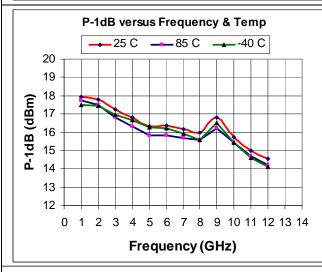
^{*}Operation of this device above any one of these parameters may cause permanent damage.

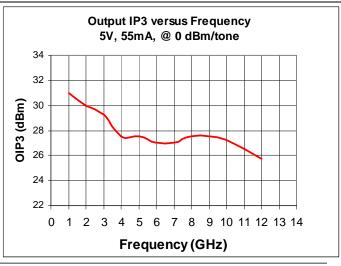

An IXYS Company

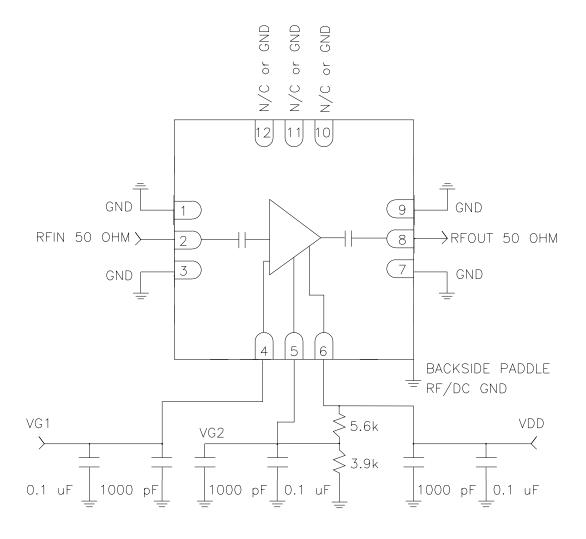

MLA-01122B-H6


1 - 12 GHz Low Noise MMIC Amplifier in Hermetic Package


May, 2011


Typical RF Performance: VDD=+5.0V, VG1=+ 0.14V, VG2=+2V, IDD=55mA, Ta=25 ℃ Z0=50 ohm (1)



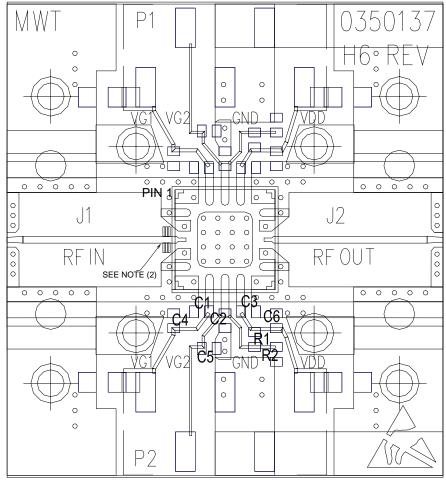


1 - 12 GHz Low Noise MMIC Amplifier in Hermetic Package

May, 2011

Application Circuit Schematic

Notes:


- 1) Package Backside is RF/DC GND and must be well grounded through PCB vias.
- 2) External DC bypass capacitors must be placed as close to package as possible.

1 - 12 GHz Low Noise MMIC Amplifier in Hermetic Package

May, 2011

Evaluation Board Layout & BOM

PARTS LIST

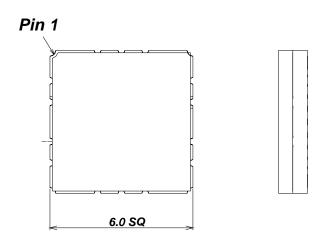
C1,C2,C3: 04025C102KAT2A 1000pF AVX
C4,C5,C6: 0402ZD104KAT2A 0.1uF AVX
R1: RK73B1ETTP562J (0402) 5.6k AVX
R2: RK73B1ETTP392J (0402) 3.9k AVX
P2: TSM-105-01-S-SV SAMTEO

J1, J2: 292-06A-5 RF CONNECTOR SOUTHWEST MICROWAVE

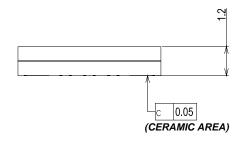
PCB: 03-50-137 MwT

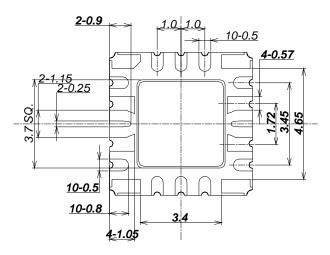
NOTES:

1) VIAS BELOW THE PACKAGE ARE SOLID FILLED VIAS.


2) INPUT TUNING STUBS REQUIRED FOR BEST BROADBAND RETURN LOSS. ATTACH 3 RIBBON STUBS(W=5 MILS, L=25 MILS EACH) ON EACH SIDE OF 50 OHM LINE NEAR RF INPUT TO PACKAGE AS SHOWN.

1 - 12 GHz Low Noise MMIC Amplifier in Hermetic Package


May, 2011


Mechanical Information:

6X6 mm, 12 Lead Ceramic Hermetic Package Outline Drawing Dimensions are in mm

Topside

Backside (Leadless SMT)

ALL DIMENSIONS IN MM X = +/-0.1 XX = +/-0.05